語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An Introduction to computational sto...
~
Powell, Catherine E.
FindBook
Google Book
Amazon
博客來
An Introduction to computational stochastic PDEs /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
An Introduction to computational stochastic PDEs // Gabriel J. Lord, Catherine E. Powell, Tony Shardlow.
其他題名:
Introduction to computational stochastic partial differential equations
作者:
Lord, Gabriel J.
其他作者:
Powell, Catherine E.
出版者:
New York, NY :Cambridge University Press, : 2014.,
面頁冊數:
xi, 503 p. :ill. (some col.) ;25 cm.
標題:
Stochastic partial differential equations. -
ISBN:
9780521728522
An Introduction to computational stochastic PDEs /
Lord, Gabriel J.
An Introduction to computational stochastic PDEs /
Introduction to computational stochastic partial differential equationsGabriel J. Lord, Catherine E. Powell, Tony Shardlow. - New York, NY :Cambridge University Press,2014. - xi, 503 p. :ill. (some col.) ;25 cm. - Cambridge texts in applied mathematics.
Includes bibliographical references (p. [489]-498) and index.
Linear analysis -- Deterministic differential equations --
"This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of the art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modeling and materials science.
ISBN: 9780521728522US60.00
LCCN: 2014005535Subjects--Topical Terms:
625093
Stochastic partial differential equations.
LC Class. No.: QA274.25 / .L67 2014
Dewey Class. No.: 519.2/2
An Introduction to computational stochastic PDEs /
LDR
:02548cam a2200277 a 4500
001
1991269
003
DLC
005
20150316202007.0
008
150930s2014 nyua b 001 0 eng
010
$a
2014005535
020
$a
9780521728522
$q
(pbk.) :
$c
US60.00
020
$a
0521728525
$q
(pbk.)
020
$a
9780521899901
$q
(hbk.)
020
$a
0521899907
$q
(hbk.)
020
$a
9781139017329
$q
(ebk.)
020
$a
1139017322
$q
(ebk.)
040
$a
DLC
$b
eng
050
0 0
$a
QA274.25
$b
.L67 2014
082
0 0
$a
519.2/2
$2
23
100
1
$a
Lord, Gabriel J.
$3
1091416
245
1 0
$a
An Introduction to computational stochastic PDEs /
$c
Gabriel J. Lord, Catherine E. Powell, Tony Shardlow.
246
3 #
$a
Introduction to computational stochastic partial differential equations
260
#
$a
New York, NY :
$b
Cambridge University Press,
$c
2014.
300
$a
xi, 503 p. :
$b
ill. (some col.) ;
$c
25 cm.
490
1 0
$a
Cambridge texts in applied mathematics
504
$a
Includes bibliographical references (p. [489]-498) and index.
505
0 #
$g
Deterministic differential equations --
$t
Linear analysis --
$t
alerkin approximation and finite elements --
$t
Time-dependent differential equations --
$g
Stochastic pocesses and random fields --
$t
Probability theory --
$t
Stochastic processes --
$t
Stationary Gaussian processes --
$t
Random fields --
$g
Stochastic Differential Equations --
$t
Stochastic ordinary differential equations (SODEs --
$t
Elliptic PDEs with random da --
$t
. Semilinear stochastic PDEs.
520
#
$a
"This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of the art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modeling and materials science.
650
# 0
$a
Stochastic partial differential equations.
$3
625093
700
1 #
$a
Powell, Catherine E.
$3
2144365
700
1 #
$a
Shardlow, Tony.
$3
2144366
筆 0 讀者評論
採購/卷期登收資訊
壽豐校區(SF Campus)
-
最近登收卷期:
1 (2015/12/07)
明細
館藏地:
全部
六樓西文書區HC-Z(6F Western Language Books)
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W0178346
六樓西文書區HC-Z(6F Western Language Books)
01.外借(書)_YB
一般圖書
QA274.25 L67 2014
一般使用(Normal)
在架
0
預約
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入