語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
One-cocycles and knot invariants /
~
Fiedler, Thomas.
FindBook
Google Book
Amazon
博客來
One-cocycles and knot invariants /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
One-cocycles and knot invariants // Thomas Fiedler, Université Paul Sabatier, France.
作者:
Fiedler, Thomas.
出版者:
Hackensack, NJ :World Scientific, : c2023.,
面頁冊數:
xxvii, 308 p. :ill. ;24 cm.
標題:
Knot theory. -
ISBN:
9789811262999
One-cocycles and knot invariants /
Fiedler, Thomas.
One-cocycles and knot invariants /
Thomas Fiedler, Université Paul Sabatier, France. - Hackensack, NJ :World Scientific,c2023. - xxvii, 308 p. :ill. ;24 cm. - Series on knots and everything,v. 730219-9769 ;. - Series on knots and everything ;v. 73..
Includes bibliographical references and index.
"One-Cocycles and Knot Invariants is about classical knots, i.e. smooth oriented knots in three-space. It introduces discrete combinatorial analysis in knot theory in order to solve a global tetrahedron equation. This new technique is then used in order to construct combinatorial one-cocycles in a certain moduli space of knot diagrams. The construction of the moduli space makes use of the meridian and of the longitude of the knot. The combinatorial 1-cocycles are then lifts of the well-known Conway polynomial of knots and they can be calculated in polynomial time. The 1-cocycles can distinguish loops consisting of knot diagrams in the moduli space up to homology. They give knot invariants when they are evaluated on canonical loops in the connected components of the moduli space. They are a first candidate for numerical knot invariants which can perhaps distinguish the orientation of knots"--
ISBN: 9789811262999US128.00
LCCN: 2022026784Subjects--Topical Terms:
523755
Knot theory.
LC Class. No.: QA612.2 / .F546 2023
Dewey Class. No.: 514/.2242
One-cocycles and knot invariants /
LDR
:01707cam a2200217 a 4500
001
2321826
005
20230607142758.0
008
231027s2023 njua b 001 0 eng d
010
$a
2022026784
020
$a
9789811262999
$q
(hbk.) :
$c
US128.00
020
$z
9789811263002
$q
(ebook for institutions)
020
$z
9789811263019
$q
(ebook for individuals)
040
$a
DLC
$b
eng
$e
rda
$c
DLC
$d
DLC
042
$a
pcc
050
0 0
$a
QA612.2
$b
.F546 2023
082
0 0
$a
514/.2242
$2
23/eng/20221007
100
1
$a
Fiedler, Thomas.
$3
3470137
245
1 0
$a
One-cocycles and knot invariants /
$c
Thomas Fiedler, Université Paul Sabatier, France.
260
#
$a
Hackensack, NJ :
$b
World Scientific,
$c
c2023.
300
$a
xxvii, 308 p. :
$b
ill. ;
$c
24 cm.
490
1
$a
Series on knots and everything,
$x
0219-9769 ;
$v
v. 73
504
$a
Includes bibliographical references and index.
520
#
$a
"One-Cocycles and Knot Invariants is about classical knots, i.e. smooth oriented knots in three-space. It introduces discrete combinatorial analysis in knot theory in order to solve a global tetrahedron equation. This new technique is then used in order to construct combinatorial one-cocycles in a certain moduli space of knot diagrams. The construction of the moduli space makes use of the meridian and of the longitude of the knot. The combinatorial 1-cocycles are then lifts of the well-known Conway polynomial of knots and they can be calculated in polynomial time. The 1-cocycles can distinguish loops consisting of knot diagrams in the moduli space up to homology. They give knot invariants when they are evaluated on canonical loops in the connected components of the moduli space. They are a first candidate for numerical knot invariants which can perhaps distinguish the orientation of knots"--
$c
Provided by publisher.
650
# 0
$a
Knot theory.
$3
523755
650
# 0
$a
Invariants.
$3
555710
650
# 0
$a
Combinatorial analysis.
$3
523878
830
0
$a
Series on knots and everything ;
$v
v. 73.
$3
3645422
筆 0 讀者評論
採購/卷期登收資訊
壽豐校區(SF Campus)
-
最近登收卷期:
1 (2023/12/13)
明細
館藏地:
全部
六樓西文書區HC-Z(6F Western Language Books)
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W0074513
六樓西文書區HC-Z(6F Western Language Books)
01.外借(書)_YB
一般圖書
QA612.2 F546 2023
一般使用(Normal)
在架
0
預約
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入