語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Combinatorial games : = tic-tac-toe ...
~
Beck, Jozsef.
FindBook
Google Book
Amazon
博客來
Combinatorial games : = tic-tac-toe theory /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Combinatorial games :/ Jozsef Beck.
其他題名:
tic-tac-toe theory /
作者:
Beck, Jozsef.
出版者:
Cambridge :Cambridge University Press, : 2008.,
面頁冊數:
xiv, 732 p. :ill. ;24 cm.
叢書名:
Encyclopedia of mathematics and its applications ;
內容註:
pt. A. Weak win and strong draw -- ch. I. Win vs. weak win -- Illustration : every finite point set in the plane is a weak winner -- Analyzing the proof of theorem 1.1 -- Examples : tic-tac-toe games -- More examples : tic-tac-toe like games -- Games on hypergraphs, and the combinatorial chaos -- ch. II. The main result : exact solutions for infinite classes of games -- Ramsey theory and clique games -- Arithmetic progressions -- Two-dimensional arithmetic progressions -- Explaining the exact solutions : a meta-conjecture -- Potentials and the Erdos-Selfridge theorem -- Local vs. global -- Ramsey theory and hypercube tic-tac-toe -- pt. B. Basic potential technique : game-theoretic first and second moments -- ch. III. Simple applications -- Easy building via theorem 1.2 -- Games beyond Ramsey theory -- A generalization of Kaplansky's game -- ch. IV. Games and randomness -- Discrepancy games and the variance -- Biased discrepancy games : when the extension from fair to biased works! -- A simple illustration of "randomness" (I) -- A simple illustration of "randomness" (II) -- Another illustration of "randomness" in games --
內容註:
pt. C. Advanced weak win : game-theoretic higher moment -- ch. V. Self-improving potentials -- Motivating the probabilistic approach -- Game-theoretic second moment : application to the picker-choose game -- Weak win in the lattice games -- Game-theoretic higher moments -- Exact solution of the clique game (I) -- More applications -- Who-scores-more games -- ch. VI. What is the biased meta-conjecture, and why is it so difficult? -- Discrepancy games (I) -- Discrepancy games (II) -- Biased games (I) : biased meta-conjecture -- Biased games (II) : sacrificing the probabilistic intuition to force negativity -- Biased games (III) : sporadic results -- Biased games (IV) : more sporadic results -- pt. D. Advanced strong draw : game-theoretic independence -- ch. VII. BigGame-SmallGame decomposition -- The Hales-Jewett conjecture -- Reinforcing the Erdos-Selfridge technique (I) -- Reinforcing the Erdos-Selfridge technique (II) -- Almost disjoint hypergraphs -- Exact solution of the clique game (II) --
內容註:
ch. VIII. Advanced decomposition -- Proof of the second ugly theorem -- Breaking the "square-root barrier" (I) -- Breaking the "square-root barrier" (II) -- Van der Waerden game and the RELARIN technique -- ch. IX. Game-theoretic lattice-numbers -- Winning planes : exact solution -- Winning lattices : exact solution -- I-can-you-can't games - second player's moral victory -- ch. X. Conclusion -- More exact solutions and more partial results -- Miscellany (I) -- Miscellany (II) -- Concluding remarks -- Appendix A : Ramsey numbers -- Appendix B : Hales-Jewett theorem : Shelah's proof -- Appendix C : A formal treatment of positional games -- Appendix D : An informal introduction to game theory.
標題:
Game theory. -
電子資源:
http://www.loc.gov/catdir/toc/fy0805/2008275067.html
ISBN:
9780521461009 (hbk.) :
Combinatorial games : = tic-tac-toe theory /
Beck, Jozsef.
Combinatorial games :
tic-tac-toe theory /Jozsef Beck. - Cambridge :Cambridge University Press,2008. - xiv, 732 p. :ill. ;24 cm. - Encyclopedia of mathematics and its applications ;v. 114. - Encyclopedia of mathematics and its applications ;v. 114.
Includes bibliographical references.
pt. A. Weak win and strong draw -- ch. I. Win vs. weak win -- Illustration : every finite point set in the plane is a weak winner -- Analyzing the proof of theorem 1.1 -- Examples : tic-tac-toe games -- More examples : tic-tac-toe like games -- Games on hypergraphs, and the combinatorial chaos -- ch. II. The main result : exact solutions for infinite classes of games -- Ramsey theory and clique games -- Arithmetic progressions -- Two-dimensional arithmetic progressions -- Explaining the exact solutions : a meta-conjecture -- Potentials and the Erdos-Selfridge theorem -- Local vs. global -- Ramsey theory and hypercube tic-tac-toe -- pt. B. Basic potential technique : game-theoretic first and second moments -- ch. III. Simple applications -- Easy building via theorem 1.2 -- Games beyond Ramsey theory -- A generalization of Kaplansky's game -- ch. IV. Games and randomness -- Discrepancy games and the variance -- Biased discrepancy games : when the extension from fair to biased works! -- A simple illustration of "randomness" (I) -- A simple illustration of "randomness" (II) -- Another illustration of "randomness" in games --
ISBN: 9780521461009 (hbk.) :US153.00
LCCN: 2008275067
Nat. Bib. No.: GBA783952bnb
Nat. Bib. Agency Control No.: 014100601UkSubjects--Topical Terms:
532607
Game theory.
LC Class. No.: QA269 / .B335 2008
Dewey Class. No.: 519.3
Combinatorial games : = tic-tac-toe theory /
LDR
:03897cam 2200337 a 450
001
872871
003
OCoLC
005
20100814135852.0
008
100814s2008 enka b 000 0 eng
010
$a
2008275067
015
$2
bnb
$a
GBA783952
016
7
$2
Uk
$a
014100601
020
$a
9780521461009 (hbk.) :
$c
US153.00
020
$a
0521461006 (hbk.)
029
1
$a
AU@
$b
000042995301
029
1
$a
NZ1
$b
11646367
035
$a
00512374
040
$a
UKM
$c
UKM
$d
BAKER
$d
BWKUK
$d
CS1
$d
DLC
$d
IXA
$d
NDHU
$d
NOR
$d
TSU
$d
U9S
$d
VVC
$d
YDXCP
042
$a
ukblcatcopy
049
$a
FISA
050
0 0
$a
QA269
$b
.B335 2008
082
0 4
$2
22
$a
519.3
100
1
$a
Beck, Jozsef.
$3
1041594
245
1 0
$a
Combinatorial games :
$b
tic-tac-toe theory /
$c
Jozsef Beck.
260
$a
Cambridge :
$c
2008.
$b
Cambridge University Press,
300
$a
xiv, 732 p. :
$b
ill. ;
$c
24 cm.
440
1
$a
Encyclopedia of mathematics and its applications ;
$v
v. 114
504
$a
Includes bibliographical references.
505
0
$a
pt. A. Weak win and strong draw -- ch. I. Win vs. weak win -- Illustration : every finite point set in the plane is a weak winner -- Analyzing the proof of theorem 1.1 -- Examples : tic-tac-toe games -- More examples : tic-tac-toe like games -- Games on hypergraphs, and the combinatorial chaos -- ch. II. The main result : exact solutions for infinite classes of games -- Ramsey theory and clique games -- Arithmetic progressions -- Two-dimensional arithmetic progressions -- Explaining the exact solutions : a meta-conjecture -- Potentials and the Erdos-Selfridge theorem -- Local vs. global -- Ramsey theory and hypercube tic-tac-toe -- pt. B. Basic potential technique : game-theoretic first and second moments -- ch. III. Simple applications -- Easy building via theorem 1.2 -- Games beyond Ramsey theory -- A generalization of Kaplansky's game -- ch. IV. Games and randomness -- Discrepancy games and the variance -- Biased discrepancy games : when the extension from fair to biased works! -- A simple illustration of "randomness" (I) -- A simple illustration of "randomness" (II) -- Another illustration of "randomness" in games --
505
0
$a
pt. C. Advanced weak win : game-theoretic higher moment -- ch. V. Self-improving potentials -- Motivating the probabilistic approach -- Game-theoretic second moment : application to the picker-choose game -- Weak win in the lattice games -- Game-theoretic higher moments -- Exact solution of the clique game (I) -- More applications -- Who-scores-more games -- ch. VI. What is the biased meta-conjecture, and why is it so difficult? -- Discrepancy games (I) -- Discrepancy games (II) -- Biased games (I) : biased meta-conjecture -- Biased games (II) : sacrificing the probabilistic intuition to force negativity -- Biased games (III) : sporadic results -- Biased games (IV) : more sporadic results -- pt. D. Advanced strong draw : game-theoretic independence -- ch. VII. BigGame-SmallGame decomposition -- The Hales-Jewett conjecture -- Reinforcing the Erdos-Selfridge technique (I) -- Reinforcing the Erdos-Selfridge technique (II) -- Almost disjoint hypergraphs -- Exact solution of the clique game (II) --
505
0
$a
ch. VIII. Advanced decomposition -- Proof of the second ugly theorem -- Breaking the "square-root barrier" (I) -- Breaking the "square-root barrier" (II) -- Van der Waerden game and the RELARIN technique -- ch. IX. Game-theoretic lattice-numbers -- Winning planes : exact solution -- Winning lattices : exact solution -- I-can-you-can't games - second player's moral victory -- ch. X. Conclusion -- More exact solutions and more partial results -- Miscellany (I) -- Miscellany (II) -- Concluding remarks -- Appendix A : Ramsey numbers -- Appendix B : Hales-Jewett theorem : Shelah's proof -- Appendix C : A formal treatment of positional games -- Appendix D : An informal introduction to game theory.
650
0
$a
Game theory.
$3
532607
650
0
$a
Combinatorial analysis.
$3
523878
809
$d
QA269
$e
B335
$p
BOOK
$y
2008
830
0
$a
Encyclopedia of mathematics and its applications ;
$v
v. 114
$3
1041595
856
4 1
$3
Table of contents only
$u
http://www.loc.gov/catdir/toc/fy0805/2008275067.html
筆 0 讀者評論
館藏地:
全部
六樓西文書區HC-Z(6F Western Language Books)
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
F0062699
六樓西文書區HC-Z(6F Western Language Books)
01.外借(書)_YB
一般圖書
QA269 B335 2008
一般使用(Normal)
在架
0
預約
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入